Isogeny classes of Hilbert-Blumenthal abelian varieties over finite fields
نویسندگان
چکیده
This paper gives an explicit formula for the size of the isogeny class of a Hilbert-Blumenthal abelian variety over a finite field. More precisely, let OL be the ring of integers in a totally real field dimension g over Q, let N0 and N be relatively prime square-free integers, and let k be a finite field of characteristic relatively prime to both N0N and disc(L,Q). Finally, let (X/k, ι, α) be a g-dimensional abelian variety over k equipped with an action by OL and a Γ0(N0, N)-level structure. Using work of Kottwitz, we express the number of (X′/k, ι′, α′) which are isogenous to (X, ι, α) as a product of local orbital integrals on GL(2); then, using work of Arthur-Clozel and the affine Bruhat decomposition we evaluate all the relevant orbital integrals, thereby finding the cardinality of the isogeny class.
منابع مشابه
ABELIAN VARIETIES OVER FINITE FIELDS WITH A SPECIFIED CHARACTERISTIC POLYNOMIAL MODULO l
We estimate the fraction of isogeny classes of abelian varieties over a finite field which have a given characteristic polynomial P (T ) modulo l. As an application we find the proportion of isogeny classes of abelian varieties with a rational point of order l.
متن کاملIsogeny Class and Frobenius Root Statistics for Abelian Varieties over Finite Fields
Let I(g, q, N) be the number of isogeny classes of g-dimensional abelian varieties over a finite field Fq having a fixed number N of Fq-rational points. We describe the asymptotic (for q →∞) distribution of I(g, q, N) over possible values of N . We also prove an analogue of the Sato—Tate conjecture for isogeny classes of g-dimensional abelian varieties. 2000 Math. Subj. Class. Primary: 11G25, 1...
متن کاملPrincipally Polarized Ordinary Abelian Varieties over Finite Fields
Deligne has shown that there is an equivalence from the category of ordinary abelian varieties over a finite field A: to a category of Z-modules with additional structure. We translate several geometric notions, including that of a polarization, into Deligne's category of Z-modules. We use Deligne's equivalence to characterize the finite group schemes over k that occur as kernels of polarizatio...
متن کاملWeil Numbers Generated by Other Weil Numbers and Torsion Fields of Abelian Varieties
Using properties of the Frobenius eigenvalues, we show that, in a precise sense, “most” isomorphism classes of (principally polarized) simple abelian varieties over a finite field are characterized, up to isogeny, by the sequence of their division fields, and a similar result for “most” isogeny classes. Some global cases are also treated.
متن کاملAbelian varieties over finite fields
A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...
متن کامل